Calibration of dynamic holographic optical tweezers for force measurements on biomaterials.

نویسندگان

  • Astrid van der Horst
  • Nancy R Forde
چکیده

Holographic optical tweezers (HOTs) enable the manipulation of multiple traps independently in three dimensions in real time. Application of this technique to force measurements requires calibration of trap stiffness and its position dependence. Here, we determine the trap stiffness of HOTs as they are steered in two dimensions. To do this, we trap a single particle in a multiple-trap configuration and analyze the power spectrum of the laser deflection on a position-sensitive photodiode. With this method, the relative trap strengths can be determined independent of exact particle size, and high stiffnesses can be probed because of the high bandwidth of the photodiode. We find a trap stiffness for each of three HOT traps of kappa approximately 26 pN/microm per 100 mW of laser power. Importantly, we find that this stiffness remains constant within +/- 4% over 20 microm displacements of a trap. We also investigate the minimum step size achievable when steering a trap with HOTs, and find that traps can be stepped and detected within approximately 2 nm in our instrument, although there is an underlying position modulation of the traps of comparable scale that arises from SLM addressing. The independence of trap stiffness on steering angle over wide ranges and the nanometer positioning accuracy of HOTs demonstrate the applicability of this technique to quantitative study of force response of extended biomaterials such as cells or elastomeric protein networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extending calibration-free force measurements to optically-trapped rod-shaped samples

Optical trapping has become an optimal choice for biological research at the microscale due to its non-invasive performance and accessibility for quantitative studies, especially on the forces involved in biological processes. However, reliable force measurements depend on the calibration of the optical traps, which is different for each experiment and hence requires high control of the local v...

متن کامل

Minimizing intensity fluctuations in dynamic holographic optical tweezers by restricted phase change.

We present a method for reducing intensity fluctuations that typically occur when a spatial light modulator is updated between consecutive computer generated holograms. The method is applicable to most iterative hologram generating algorithms and minimizes the average phase difference between consecutive holograms. Applications with high stability requirements, such as optical force measurement...

متن کامل

Design strategies for optimizing holographic optical tweezers setups

We provide a detailed account of the construction of a system of holographic optical tweezers. While a lot of information is available on the design, alignment and calibration of other optical trapping configurations, those based on holography are relatively poorly described. Inclusion of a spatial light modulator in the setup gives rise to particular design trade-offs and constraints, and the ...

متن کامل

DNA as a metrology standard for length and force measurements with optical tweezers.

Optical tweezers have broad applications in studies of structures and processes in molecular and cellular biophysics. Use of optical tweezers for quantitative molecular-scale measurement requires careful calibration in physical units. Here we show that DNA molecules may be used as metrology standards for force and length measurements. Analysis of DNA molecules of two specific lengths allows sim...

متن کامل

The effect of external forces on discrete motion within holographic optical tweezers.

Holographic optical tweezers is a widely used technique to manipulate the individual positions of optically trapped micron-sized particles in a sample. The trap positions are changed by updating the holographic image displayed on a spatial light modulator. The updating process takes a finite time, resulting in a temporary decrease of the intensity, and thus the stiffness, of the optical trap. W...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 16 25  شماره 

صفحات  -

تاریخ انتشار 2008